###
The Bohr Model

Students will understand Bohr’s experimental design and conclusions that lead to the development of his model of the atom, as well as the limitations of his model.

###
Valence Shell Electron Pair Repulsion

Given illustrations or descriptions, students will predict the shape of molecules based upon the extent of the electron pair electrostatic repulsion.

###
Chemical Bonding: Metallic Bonds

Given scenarios or diagrams, students will describe the nature of metallic bonding and explain properties such as thermal and electrical conductivity, malleability, and ductility of metals.

###
Electron Configuration

Given descriptors, diagrams, and chemical symbols, students will use the periodic table to determine the electron configuration of neutral atoms.

###
Nomenclature: Covalent Compounds

Given descriptions, diagrams, or scenarios, students will write and name the chemical formulas of binary covalent compounds.

###
Ionic Bonds: Electron Dot Formulas

Given descriptions, diagrams, scenarios, or chemical symbols, students will model ionic bonds using electron dot formulas.

###
Moles and Molar Mass

Given descriptions or chemical formula of a substance, students will use the concept of a mole to relate atomic mass to molar mass.

###
Types of Solutions: Saturated, Supersaturated, or Unsaturated

Given scenarios, graphs, diagrams, or illustrations, the student will determine the type of solution such as saturated, supersaturated, or unsaturated.

###
Conservation of Mass—It's the Law!

This resource includes videos, interactives, and additional resources to help students understand the law of conservation of mass and how to balance chemical equations.

###
Properties: Extensive and Intensive

Given descriptions or illustrations of properties, students will determine whether the property is chemical or physical, and if it is physical, if it is intensive or extensive.

###
Periodic Table Families

Given descriptions or specific element groups, students will use a Periodic Table to relate properties of chemical families to position on the table.

###
Solids, Liquids, and Gases

Given descriptions, scenarios, or illustrations, students will distinguish between the compressibility, structure, shape, and volume of solids, liquids, and gases.

###
Properties: Mixtures

Given descriptions, scenarios, or illustrations of properties, students will distinguish between pure substances and mixtures.

###
Atomic Theory: Electromagnetic Spectrum

Given a diagram of the electromagnetic spectrum, students will relate the frequency to type of wave produced.

###
Electromagnetic Spectrum

Given descriptions or illustrations, students will use the light and energy formula to solve for frequency, wavelength, or energy.

###
Average Atomic Mass

Given descriptions, scenarios, or diagrams, students will calculate the average atomic mass by weighted average.

###
Radiation Types

Given illustrations, diagrams, or descriptions, students will identify alpha, beta, or gamma radiation.

###
Periodic Table Trends

Given descriptions, scenarios, or groups/series of elements, students will use the Periodic Table to relate the size of the atomic radii, electronegativity, and ionization energy of elements to their position on the chart. Students will need to be familiar with the trends of the Periodic Table.

###
Nuclear Chemistry: Radioactive Decay

Given illustrations, symbols, or descriptions, students will balance nuclear equations.

###
Fusion and Fission

Given diagrams, illustrations, symbols, or descriptions, student will distinguish between nuclear fusion and nuclear fission.